Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models.
نویسندگان
چکیده
Neurons rely on action potentials, or spikes, to relay information. Pathological changes in spike generation likely contribute to certain enigmatic features of neurological disease, like paroxysmal attacks of pain and muscle spasm. Paroxysmal symptoms are characterized by abrupt onset and short duration, and are associated with abnormal spiking although the exact pathophysiology remains unclear. To help decipher the biophysical basis for 'paroxysmal' spiking, we replicated afterdischarge (i.e. continued spiking after a brief stimulus) in a minimal conductance-based axon model. We then applied nonlinear dynamical analysis to explain the dynamical basis for initiation and termination of afterdischarge. A perturbation could abruptly switch the system between two (quasi-)stable attractor states: rest and repetitive spiking. This bistability was a consequence of slow positive feedback mediated by persistent inward current. Initiation of afterdischarge was explained by activation of the persistent inward current forcing the system to cross a saddle point that separates the basins of attraction associated with each attractor. Termination of afterdischarge was explained by the attractor associated with repetitive spiking being destroyed. This occurred when ultra-slow negative feedback, such as intracellular sodium accumulation, caused the saddle point and stable limit cycle to collide; in that regard, the active attractor is not truly stable when the slowest dynamics are taken into account. The model also explains other features of paroxysmal symptoms, including temporal summation and refractoriness.
منابع مشابه
Identification of Molecular Pathologies Sufficient to Cause Neuropathic Excitability in Primary Somatosensory Afferents Using Dynamical Systems Theory
Pain caused by nerve injury (i.e. neuropathic pain) is associated with development of neuronal hyperexcitability at several points along the pain pathway. Within primary afferents, numerous injury-induced changes have been identified but it remains unclear which molecular changes are necessary and sufficient to explain cellular hyperexcitability. To investigate this, we built computational mode...
متن کاملImbalance of ionic conductances contributes to diverse symptoms of demyelination.
Fast axonal conduction of action potentials in mammals relies on myelin insulation. Demyelination can cause slowed, blocked, desynchronized, or paradoxically excessive spiking that underlies the symptoms observed in demyelination diseases. The diversity and timing of such symptoms are poorly understood, often intermittent, and uncorrelated with disease progress. We modeled the effects of demyel...
متن کاملAltered axonal excitability properties in amyotrophic lateral sclerosis: impaired potassium channel function related to disease stage.
Fasciculations are a characteristic feature of amyotrophic lateral sclerosis (ALS), and can arise proximally or distally in the motor neuron, indicating a widespread disturbance in membrane excitability. Previous studies of axonal excitability properties (i.e. threshold electrotonus, strength-duration time constant) have suggested respectively that change in potassium or sodium channels may be ...
متن کاملAntibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملInvestigation of Dynamical Behavior (Transverse Vibration) and Instability Analysis of Carbon Nanotubes Conveying Nanofluid
This work focuses on the dynamical behavior of carbon nanotubes, including vibration, wave propagation and fluid-structure interaction. In the present research, transverse vibration of nano fluid conveying carbon nanotubes is investigated. To this end, based on the nonlocal and strain-inertia gradient continuum elasticity theories and by using rod and Euler-Bernoulli beam models, the system’s d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neural engineering
دوره 8 6 شماره
صفحات -
تاریخ انتشار 2011